Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.08.23289687

ABSTRACT

SARS-CoV-2 molecular testing coupled with whole genome sequencing is instrumental for real-time genomic surveillance. Genomic surveillance is critical for monitoring the spread of variants of concern (VOC) as well as novel variant discovery. Since the beginning of the pandemic millions of SARS-CoV-2 genomes have been deposited into public sequence databases. This is the result of efforts of both national and regional diagnostic laboratories. Here we describe the results of SARS-CoV-2 genomic surveillance from February 2021 to June 2022 at a metropolitan hospital in the USA. We demonstrate that consistent daily sampling is sufficient to track the regional prevalence and emergence of VOC. Similar sampling efforts should be considered a viable option for local SARS-CoV-2 genomic surveillance at other regional laboratories.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.15.532878

ABSTRACT

The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro, or growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2.


Subject(s)
Virus Diseases , Severe Acute Respiratory Syndrome
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.30.486882

ABSTRACT

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro, or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.


Subject(s)
Severe Acute Respiratory Syndrome
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.25.22274187

ABSTRACT

Mutations in the viral genome of SARS-CoV-2 can impact the performance of molecular diagnostic assays. In some cases, such as S gene target failure, the impact can serve as a unique indicator of a particular SARS-CoV-2 variant and provide a method for rapid detection. Here we describe partial ORF1ab gene target failure (pOGTF) on the cobas(R) SARS-CoV-2 assays, defined by a [≥]2 thermocycles delay in detection of the ORF1ab gene compared to the E gene. We demonstrate that pOGTF is 97% sensitive and 99% specific for SARS-CoV-2 lineage BA.2.12.1, an emerging variant in the United States with spike L452Q and S704L mutations that may impact transmission, infectivity, and/or immune evasion. Increasing rates of pOGTF closely mirrored rates of BA.2.12.1 sequences uploaded to public databases, and, importantly increasing local rates of pOGTF also mirrored increasing overall test positivity. Use of pOGTF as a proxy for BA.2.12.1 provides faster tracking of the variant than whole-genome sequencing and can benefit laboratories without sequencing capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL